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This chaYIr discusses an extra capability that few cognitive architectures have, even though it is both
useful from a programming point of view and arguably a good approximation to a human capabilities.
People can reconstruct goal structures and other aspects of their internal state that have been forgotten.
For instance, suppose one is interrupted in the middle of solving a difficult problem by a long involved
phone call. When the phone call is over, one can eventually pick up the problem solving where one left off.
This capability is called goal reconstruction. Because goal reconstruction requires no special training to
acquire it and it does not have to be acquired separately for each a new problem solving procedure one
learns, goal reconstruction is arguably a fundamental, task-general capability of human problem solvers.
Goal reconstruction is also a useful capability even for an artificial problem solver. ft permits recovery from
interruptions of the problem solving by processes that modify the body of procedural knowledge, such as an
inferential learning process or a programmer debugging the procedural knowledge. In short, goal
reconstruction is both a fundamental human capability and a useful capability for At architectures.

Goal reconstruction is part of the larger process of maintaining a goal structure. Our analysis of goal
reconstruction is based on the insight that goal maintenance is a special case of the notorious frame
problem in Al. The frame problem is to keep a model of the world up to date as actions take place in the
world. Sometimes actions have unexpected and wide-ranging effects, which may make it difficult to
calculate how much of the model needs changing in order to reflect the change wrought by the action on
the real world. Of course, if the agent can see the world, then perceptual processing can be partially
substituted for the cognitive processing that calculate updates to the model. At first glance, the frame
problem has nothing to do with goal maintenance. Goals are not usually thought of as being a part of the
real world, so literally speaking, maintenance of goals is not maintenance of an internal model of the
external world. However, the agent's knowledge, when viewed as a disembodiad logical sy.ten, can be
applied to the external world in order to generate a virtual or ideal goal structure. For the sake of the
analogy, we can pretend that this Platonic goal structure is "in the real world." Now it is clear that
maintaining the agent's internal goal structures is exactly a frame problem: it must manipulate its internal
goal structures so that they accurately reflects changes in the external, Platonic goal structures. As always
in the frame problem, perceptual processing can be substituted, at least in principle, for internal
calculations. This paper discusses computational mechanisms for implementing this "in principle" tradeoff
between perceptual and cognitive maintenance of goals.
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When you purchase a programming language, what you actually receive is an a program (an interpreter

or a compiler) that causes text written in thc programmi,,g language to control the actions of the computer.

When you buy an expert system shell or an Al programming environment, you get not only an interpreter but

a variety of other programs as well. For instance, you often receive inference engines, data base management

tools, graphics packages and libraries of utility programs. When you obtain a symbolic architecture, you

receive an interpreter and some extra capabilities, most of which are not found even in the most advanced

e,!eyi v ,em -hells. For instance, in the Pittsburgh architectures--Soar (Rosenbloom, Newell & Laird,

1990), Prodigy (Carbonell, Knoz'ock & Minton, 19??) and Theo (Mitchell et al., 1990)--the extra capabilities

include a kind of dynamic optimization. Programs automatically get faster as they run. Fro::. a purely

pragmatic view. a symbolic architecture is just an expert system shell with some novel features added. Even

architectures that are intended to model human Lognition resemble augmented expert system shells. If one

removed the automatic learning from ACT* (Anderson, 1983), it would be indistinguishable from many

expert system shells on the market, because they too have a semantic net database and a production system

programming language. On the other hand, the current state of the art is merely a stage in the development

of much more powerful architectures. Architectures may evolve to the point where they are no longer

programmed but instead acquire expertise through training and experience in much the same way thit

humans do. However, it is fair to say that we do not yet have such general problem solvers. Currently. an

architecture is a programming language with some powerful, unusual extra capabilities.

This chapter discusses an extra capability that few architectures have, even though it is both useful

from a programming point of view and arguably a good approximation to a human capabilities. People can

reconstruct goal structures and other aspects of their internal state that have been forgotten. For instance,

suppose one 's interrupted in the middle of solving a difficult problem by a long involved phone call. When

the phone call is over, one can eventually pick up the problem solving where one left off. This capability is

called goal reconstruction. Because goal reconstruction requires no special training to acquire it and ii does

not have to be acquired separately for each a new problem solving procedure one learns, goal reconstruction

is arguably a fundamental, task-general capability of human problem solvers. Goal reconstruction is also a

useful capability even for an artificial problem solver. It permits recovery from interruptions of the problem

solving by processes that modify the body of procedural knowledge, such as an inferential learning process

or a programmer debugging the procedural knowledge. In short, goal reconstruction is both a fundamental

human capability and a useful capability for Al architectures.

Goal reconstruction is part of the larger process of maintaining a goal structure. Our analysis of goal



reconstruction is based on the insight that goal maintenance is a special case of the notorious frame problem

in Al. The frame problem is to keep a model of the world up to date as actions takc place in the world.

Sometimes actions have unexpected and wide-ranging effects, which may make it difficult to calculate how

much of the model needs changing in order to reflect the change wrought by the action on the real world. Of

course, if the agent can see the world, then perceptual processing can be partially substituted for the cognitive

processing that calculate updates to the model. At first glance, the frame problem has nothing to do with goal

maintenance. Goals are not usually thought of as being a part of the real world, so literally speaking,

maintenance of goals is not maintenance of an internal model of the external world. However, the agent's

knowledge, when viewed as a disembodied logical system, can be applied to the external world in order to

generate a virtual or ideal goal structure. For the sake of the analogy, we can pretend that this Platonic goal

structure is "in the real world."1I Now it is clear that maintaining the agent's internal goal 3Lructures is exactly

a frame problem: it must manipulate its internal goal structures so that they accurately reflects changes in the

external, Platonic goal structures. As always in the frame problem, perceptual processing can be substituted,

at least in principle, for internal calculations. This paper discusses computational mechanisms for

implementing this "in principle" tradeoff between perceptual and cognitive maintenance of coals.

1. Three prob!ems to be solved by goal reconstruction

Goal reconstruction is a solution to three problems in cognitive theory. Two of the problems stem

from inadequacies in current accounts of human working memory for goals. The third problem is that

current accounts of problem solving overemphasize planning and plan-following, because much of human

behavior is situated as opposed to being planned. This section contains a discussion of each problem in turn.

The first problem has to do with working memory capacity for goals. People cannot remember

arbitrarily large goal structures for arbitrarily long times. For instance, a telephone call often causes one to

forget one's place in a problem. An early approach to modeling this human trait was tc assume that goals

were held in a capacity limited memory, called STM or working memory. For instance, Newell and Simon

(1972, pg. 808) claimed that "STM holds about five to seven symbols, but only about two can be retained for

on" task while another unrelated task is performed." Because working memory holds both goals and

intermediate results, and these can accumulate quickly while problem solving, it is difficult to perform

significant computations when working memory is strongly capacity limited. Thus, it was assumed that

1.Many Al problem solvers assume that high level descriptions, such as "block-1 supports block-2," are par of the real world. In fact,
a robot would have to infer such relationships with the aid of a sophisticated vision system. Goals are also produced by inferences. So it
Is not such a great leap to consider goals as well as "block-I supports block-2" relationships as being "in the real world."
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people use the external world as a storage place for temporary results while problem solving, and this makes

it just like a working memory. For instance, Newell and Simon say (pg. 801) that the operativc "STM should

b: defined, not as an internal memory, but as the combination of (1) the internal STM (as me.,sured by the

usual psychological tests) and (2) the part of a.-w visual dispt-v that is in the subject's foveal view." Thus,

instead of trying to remember an intermediate result, such as T=O, the person writes it down on a worksheet.

Things are not so simple for goals, however, because people do not usually write goals on their workshcets.

Anderson (1983, pg. 161) showed how to reconstruct Tower of Hanoi goals using task-specific knovledge

about the puzzle, but he did not present a general capability. Thus, goal reconstruction has been thought for

some time to be important as a way of increasing the effective capacity of working memory, although a

general model of goal reconstruction was never developed.

Another problem in cognitive theory involves the access characteristics of goal memory. In most

models of human goal storage, goals are held in a last-in-first-out goal stack (Newell & Simon, 1972; Laird,

Newell, & Rosenbloom, 1987; VanLehn, 1989a). That is, when a person is done with a goal and needs to

select a new goal to work on, the only goals that c~n be selected are those that were most recently created and

are not yet accomplished. This restriction is called the LIFO (last-in-first-out) convention. Consider, for

instance, a cognitive procedure Aith the following goal structure:

Top goal
Subgoal 1

Sub-subgoal A
Sub-subgoal B

Subgoal 2
Sub-subgoal C
sub-subgoal D

Suppose all these goals are conjunctively related, so that achieving the top goal means that all the subgoals

must be achieved. Suppose further that the lowest goals, the ones with letters as their names, correspond to

physical actions that an experimenter could observe the subject doing. Let us see what kinds of goal

selection orders are allowed by the LIFO restriction. Suppose the top goal constructs subgoals 1 and 2 at the

same time. Subgoal 2 is selected, and constructs goals C and D at the same time. Goal C is selected. After it

is finished by performing some physical action, the subject must choose either goal 1 or goal D, as these two

have been constructed but not yet executed. The LIFO restriction implies that gcal D must be chosen, as it is

younger. Thus, in a LIFO architecture, the experimenter would never see actions in the sequence CADB, as

this interleaves subgoals of goals I and 2. Of the 24 possible permutations of the four primitive goals, only 8

can be generated by a LIFO architecture.

Intuitively, the LIFO restriction is quite implausible. It essentially says that there are some subgoa!s
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that one can recall but cznnot select. In the example above, one can recall subgoal I (since it will be selected

later) and yet one cannot select it because subgoal D is younger. For instance, suppose the top goal v "do

evening chores" and subgoals I and 2 are, respectively, "clean breakfast dishes" and "prepare dinncr." A

LIFO restriction would mean that one would have to clean all the breakfast dishes before starting the dinner

preparation, or vice-versa. On this analysL , many people violate the LIFO restriction nightly.

The problem with the evening-chores example is that we do not really know what the goal structure-, of

the subjects are. There are other goal structures than the one above that would allow a LIFO architecture to

interleave dish-cleaning actions with dinner-preparing actions.

There are, however, good examples of the LIFO constraint being violated. We discovercd ,

elementar} school students (from a sample of 26) who executed subtraction procedures in a non-LIF-() order

(VanLehn, Ball & Kowalski. 19S9). The goal structure of subtraction procedures, i-,, quite \&eil un rst<,

(VanLehn, 198,a), and there is no reason to believe that these student,, goal structures,, ere an'. dilfcrent

from their peers'. If the S students did have one of the standard goal structures, then the sequenc'e of ph\ ,'al

actions they made could only be accomplished by violating the LIFO constraint.

Moreover, there were strong regularities in the 8 students' ac ions that make it highly unlikel} that

their behaioi is due to working memory failures wherein a basically LIFO goal storage mechanism

"accidentall}" marks the wrong goal as most recent. This source of non-LIFO execution should appear a,

random 'point" mutations to the standard execution sequence and it should also be fairly infrequent. This va,

not what the 8 students did. The generally had two or more stable execution orders, some of which could

only be generated by a non-LIFO architecture. For instance, one student had 3 stable orders:

1. The standard order. Columns are processed right-to-left, and the borrowing for one column is

finished before the next column is begun.

2. Horizontal order. All the borrowing in the problem is done on a right-to-left horizontal pass

acioss the columns. Then the columns are answered on a second horizontal pass, which may be

either right-to-left or left-to-right.

3. Vertical order. Columns are processed in right-to-left order. However, borrows are not

completed before moving on to the next column. Instead, all marks in column, including any

marks caused borrows from earlier columns, are done together.

The student used the standard order on 4 problems, the horizontal order on 4 problems, the vertical order on 3

problems, and a blend of the horizontal and vertical orders on two problems. The systematicity of her



behavior makes it implausible mat her non-LIFO orderings are based on working memory failure.2

These 8 students provide clear examples of violations of the LIFO constraint. They allow us to

conclude what was intuitively obvious all along: people can select any goal for execution that they can recall.

Whether or not it is sensible to make a non-LIFO choice is, of course, task specific. The reason the LIFO

constraint has survived as long as it has in models of the architecture is due to the structures of the task

domains, which generally require or encourage a LIFO selection of goals. Subtraction, which is not one the

task domains typically studied in the architecture literature, does not have this LIFO property.

This work shows that the operative working memory is non-LIFO, but as Newell, Simon, Anderson

and others have pointed out, the operative working memory is implemented in part by visual perception. It

could sull be the case that inter.i- working memory is LIFO and that the non-LIFO aspects of the

subtraction subjects' behavior is due to the way they infer or reconstruct goals from what they see. This led

us to investigate the process of goal econstruction.

A third problem in cognitive ,h.jrv comes from recent wcrk in robotics and ethnomethodoloey.

Several invesugators have worned that real-ume, adaptive control of behavior does not allow for interlea ving

planning and pl:ut lollo s ing Instead, people just act. As Agre and Chapman (1987, pg. 268) put it, "Rather

tfan relying on reasoning to intervene between perception and action, we believe activity mostly- derise,

from serv simple sorts of machinery interacting , ith the immediate situation. This machinery exploits

roulariues ,n its interaction k ith the world to engare in complex, apparently planful activity without

requiirig explicit models of the %,orld.' This belicf that action is derived by cursory examination of the

,jtuaton rather than reasoning is often called the situated action paradigm (Suchman. 1987).

It Aould be wrong to think that the proponents of situated action claim people's mental apparatus

make\ it impos ible for them to plan their actions. As Agre and Chapman (1987, pg. 272i put it. 'A Ve do no:

believe that the human centrzl system has no state. Our point is simply that state is less necessary and less

important than is often assumed." Currently developed computational models of situated action (Agre &

Chapman, 1987: Brooks, 1990 are claimed to be ineresting architectures for robotis and not literal models

-)f human cognitive capabiliues. These architecture have so little internal .,ate that they can not model

simple tasks, such as counting or mental multiplicauon, that humans can easily perform. Even mundane

2lOne mighl think that this subject has hrer distinct wuhractou procedures, one for each order tlowever, this woutld not explain her
ahilitv to hiend the honional and verical orders, as she does on tvo problems For more discussion of this and other challenges to the
ciwclusins see Vanl.ehn, Ball and Kovsalski (t989)
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tasks, which are intended to be the forte of these architectures, sometimes cannot be done in a purely situated

way. For instance, one of us once had a job washing glassware in a medical laboratory. The procedure was

to wash the glassware 6 times in tap water .hen 6 times in distilled water. Since one cannot tell by looking at

a piece of glassware how many times it has been washed, the Pengi architecture (Agre & Chapman. 1987)

cannot solve this task.

Suchman (1987) ,-%es take situated acuon as an account of human behavior, so her positicn is more

complex than her robotics colleagues. Suchman points out that people do plan, as for example, when they

study a river rapids in order to plot a course for their canoe. However, these plans "are constituent as an

:tifact of our reasoning about action, not as the getierative mechanism faction." (Suchman, 1987, pg. 39,

emphasis originall Suchman is mostly concerned with plans derived as post-hoc explanations of behavior, so

her book does not contain a clea- statement about the causal entailments of plans made in advance of an

action. Her choice of a canoeing example suggesLs that she does believe that advance planning can effect

action,, albeit 'ndir.ctly: planning to paddle to the left around a boulder in the rapids is one factor involved in

causing the ultimate action of paddling to the left of the bouldr. Suchman's major point, however, is that

advance planning is rare, and even when it does occur, "plans are best viewed as a weak resource for what is

primarily ad hoc activity." (ibid. pg. ix)

The stuted action positon is certainly partially right, because current models of the human problem

solving have emphasiz-d planned action rather than situated action. In part this is due to their historical

rootLs, which lie in studies of people working with puzzles, mathematical problems and other tasks where

planned actions are probably more common than ;ituated actions. The problem for cognitive modeling is to

develop an architecture that can easily and seamless;y oscillate between planned action and situated action,

since both occur in human behavior and we are often not even aware, even in retrospection, of the transitions

between them (Suchman, 1987).

\, e believe that goal reconstruction is exactly what is needed for this seamless oscillation between

situated and planned , ction. An architecture will be described that can operate with almost no internal state

by rapidly reconstrucing whatever goals are necessary in the current situation. It will be demonstrated that

thc.;e goal reconstrution processes are formally identical to processes for perceptual parsing of the situation,

so goal reconstruction can be thought of as high-level perception. This nicely captures the principal intuition

of the situated action paradigm, which is that much action is guided by perception. On the other hand. when

goals can be recalled or when they mu,i ne recalled, the architecture can do that as well. So it c.- develop

plans in memory and follow them. Moreover, this sort of planned activity blends seamessly into situated



7

activity.

In short, goal reconstruction is claimed to be a solution to these three problems in cognitive modeling:

How do people access more goals than they can reliably store in memory? How do people implement a

non-LIFO goal store" How do people blend situated and planned action?

2. Reconstruction in several problem-space architectures

Goal reconstruction depends strongly on interpretation of visual scenes, so it would seem that any

model of goal reconstruction should include at least a rudimentary model of perception. However, it is

convenient to start the discussion by ducking the question of perception entirely. In this section, an initial

mechanism for goal reconstruction is developed. In the next section, the initial model is augmented with a

rudimentary model of perceptual processing.

A standard way to avoid modeling perception (and motor control as well -- but that is irrelevant to this

paper) is to use a problem space. In order to model a given task, the theorist specifies a set of primitive

predicates and a wzy of composing them into descriptions of a problem state. In the model, the current

problem state, which is one of these compositions of primitive predicates, represents that which the person

infcrs from perceiving the real problem state. Thus, the problem space technique avoids the perception issue

by postulating the output from the perceptual interpretation processes without describing the processes

themselves.

There are many ways to implement a problem space. This section argues that goal reconstruction is

simple to implement in an) of the implementations of problem spaces. However, in order to make the

argument easier to follow, an implementation of goal reconstruction will be described for a particular

implementation of problem spaces. This implementation depends crucially on a Truth Maintenance System

or TMS. Although this is a standard piece of technology in AI, it was developed fairly recently (Doyle,

1979; deKleer, 1986), so not all readers may be familiar with it. The first subsection describes a TMS-based

implementation of problem spaces and how a TMS works. The second subsection presents a simple

implementation of goal reconstruction. The third subsection argues that goal reconstruction is simple to add

to other implementations of problem spaces.
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2.1. Modeling state changes with a TMS

The implemenmai I, of problem spaces presented here is the one pioneered by Strips (Fikes, Hart &

Nilsson, 1972). The TMS-based implementation of Strips problem spaces was developed more recently and

is used by Prodigy (Carbonell, Knoblock & Minton, 19??) and other problem solvers.

A state is represented by a set of literals in a first order logic. A lite-al is just a single predicate which

may or may not be negated. Thus, on(block56,block2) and not (clear(top(block2))) are

both literals. Literals that are used to represent states have no variables in them. They have only constants,

such as block56, and functions of constants, such as top (block2). We use the Prolog convention of

capitalizing variables. Constants, functions and predicates are written in lower case.

Perception (reading the state) is modeled by matching expressions against the set of literals that

represents the current problem state. To find out what block is on block2, the expression on (X, block2)

is compared to all the literals in the current state until one is found that matches (unifies) with it. Matching

causes the variable X to be matched to a constant, say block5 6, thus answering the question of which block

is on block2.

Action is represented by addib'g and deleting literals from the current state, thus creating a new state.

A generic action is called an operator, and its generic effects are represented by a list of literals to be added to

the current state (the add-list) and a list of literals to be deleted (the del-list).

In order to allow this economical description of actions to model complicated state changes, rules are

used to maintain logical relationships that hold in all states. For instance, suppose the problem space uses a

literal indirectly-cn (X, Y) that means that X is directly on top of Y (i.e., on (X, Y) ) or X is on top of

something that is indirectly-on Y. Two rules can be used to provide a formal recursive definition of

indirectly-on:

1. If on(X,Y) then indirectly-on(X,Y).
2. If there is a Z such that on(X,Z) and indirectly-on(Z,Y),

then indirectly-on(X,Y).

Given these rules, the operators need only mention their effects on the on literals. They do not have to

mention indirectly-on literals in their add-lists and del-lists since the effects on those can be calculated

with the two rules above. For the sake of discussion, let us distinguish primitive literals from derived literals.

A primitive literal is one that is added directly to the problem space by an operator's execution because a

generic version of it appeared in the operator's add-list. A derived literal is one that is added by the

execution of a rule.
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Although it is clear that the rules provide the knowledge that is required for omitting derived literals

from add-list and the del-lists, it is not as simple as it might seem to get the system to use this knowledge

effectively. There are two basic methods. The simpler one, which was used by Strips, is to create a new

empty state, add all the primitive literals specified by the operator's add-list and copy all the primitive literals

from the old state that are not mentioned by the operator's del-list. Now the new state has all the primitive

literals that it should have. The derived literalq are added by repeatedly firing the rules until no new derived

literals are inferred. Many of these derived literals will be equal to ones in the preceding state. For instance,

if block A is on block B in the old state, and the action does not effect that, then indirectly-on (A, B) is

true in both the old state and the new state. Thus, this method of modeling action amounts !o reconstructing

problem states.
3

The other method of modeling, which is used by Prodigy (Carbonell, Knoblock & Minton, 19??),

achieves exactly the same result, but is more efficient because it substitutes cheap copying and removal

operations for expensive rederivation operations. The copying and removal operations use a TMS. The

basic idea is to copy all the literals in the old state, including the derived ones, then remove all the literals that

should be removed and add all the literals that should be added. The trick is to remove only the right literals.

This happens in two stages. First, all the primitive literals that are explicitly mentioned in the operator's

del-list are retracted. Second, the TMS retracts derived literals whose derivations depend on retracted

primitive literals. In order to do this, the derivations of the literals have to be remembered.4 If any of the

primitive literals in the derivation are retracted, then the derived literal is also retracted. This retraction

process is guaranteed to retract all and only the appropriate derived literals.

Next, the TMS-based system adds the literals from the operator's add-list and runs rules until

quiescence. There is a trick that is used to speed this part of the process up. It is often the case that one of

the derived literals that was retracted during the first phase is rederived during the second phase. Since the

system has to remember derivations anyway, it is can save work by looking up the derivations that depended

on this literal and calculate which ones can now be reinstated because the literal has been reasserted.

Reinstating old retracted literals can be computationally cheaper than reinferring them. This trick is called

un-outing (Doyle, 1979; deKleer, 1986).

3
Although this description uses forward chaining, most problem solvers use backwards chaining. Instead of drawing all possible

inferences as soon as the state is created, backward chaining makes inferences only when the problem solver poses a query, such as
i 7-di rec, ' y-or. X, bb cck2). The important point is that in the reconstruction method, only the primitive literals are copied from
the old state to the new state. Exactly when the derived literals are inferred does not matter.

4A derivation is a proof tree whose leaves are primitive literals. Thus, if rule I is used to derive C from A and B, and rule 2 is used to
derive E from C and D, then the derivation for E is the tree (E (C (A B)) D).
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An example of a TMS-based state maintenance may be helpful. Suppose that when ever a block is

supported directly or indirectly by the table, then X stable. This is expressed by the following rule

If indirectly-on(X,table) then stable(X).

Suppose that in the old state, block56 is indirectly on the table and stable because it is on block2, which is

directly on the table. That is, on(block56,block2) and on (block2, table) imply that

indirectly-on (block56, table) by the rules listed earlier, and this implies stable (block56).

Suppose that an operator applies, and moves block56 off block2 and onto the table. The del-list of the

operator will retract on(block56,block2) and the TMS will thus retract

indirectly-on (block56, table) and stable (block56) because their derivations depended on

the retracted literal. Eventually, all the appropriate literals will be removed from the state. Now the TMS

adds literals from the add-list, including on(block56,table). The rules are run, and they infer

indirectly-on (block56, table). The TMS notices that this literal is identical to one in the old

state. It uses the un-outing mechanism to reinstate stable (block56) immediately without referring to

the inference rules. It knows that this is appropriate because the derivation of stable (block56), which

has to be saved anyway for retraction to work correctly, indicates that stable (block56) depends only

on indirectly-on (block56, table).

2.2. Goal reconstruction in a problem-space architecture

Although both the reconstruction and TMS methods of implementing state change are widely used in

Al (see Cha-niak and McDermott's (1986) textbook, section 7.3), it is rarely recognized that they can also be

used for maintaining the problem solver's goal structures. This section sketches a problem solver, similar to

Amord (de Kleer, Doyle, Steele & Sussman, 1977), that uses a TMS to maintain its goal structures.

A goal is usually defined to be a description (i.e., logical expression) of a state that is desired. A goal

is satisfied if the current state matches the description. A pending goal is a logical expression that does not

match th,' current state. Suppose problem solving starts with an initial state that contains a pending goal,

which is represented by wrapping the pseudo-connective pending-goal around a logical expression.

Thus, the goal of holding block37 in one's hand can be represented by

pending-goal (holding (block37)).

When pending goals are represented this way, the rule mechanism mentioned above can be used to

calculate what kinds of actions are appropriate for the given goals. This is most easily demonstrated with an

example. The following rules indicate how to achieve a holding (X) goal given that the hand can only

hold one block at a time.
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If pending-goal(holding(X)) and not (holding(Y)),
then executable (pick-up (X)).

If pending-goal(holding(X)) and holding(Y) and not(X=Y),
then pending-goal (not (holding(Y))).

If pending-goal (not (holding (Z))) and holding (Z)

then executable (put-down(Z)).

These rules use pseudo-literals of the form executable (Op), where Op is an operator, in order to indicate

that the specified operator is an appropriate action. In this case, if the initial state is the literals

holding (block6)
pending-goal (holding (block37))
not (block37=block6)

then the second and third rules will add the following derived literals:

pending-goal (not (holding (block6)))
executable (put-down (block6))

This represents the process of deciding that putting down the block being held is a good idea given the

current goal and the current situation. Much more complicated reasoning can also be represented.

When an action is finally taken, some or all of the pending-goal literals must be retracted because

their predicates will now be true and only unsatisfied goals are represented with pending-goal literals.

Both the reconstruction methods and the TMS method work just fine for updating pending-goal literals.

Let us consider reconstruction first. In order to model the state change caused by executing the operation

put-down(block6), reconstruction adds the literal not(holding(block6)) to the new state

because that literal is mentioned in the operator's add-list. Then it copies over primitive literals from the old

state that are not mentioned in the del-list. This adds pending-goal (holding (block37) ) and

not (block37=block6) to the new state. Notice that the old derived literal,

pending-goal (not (holding (block6) ), is not copied over. Now the reconstruction method runs

the rules, which adds to t'e state the literal executable (pick-up (block37) ). This demonstrates

how the reconstruction method works to maintain goal structures. Essentially, it starts over from the top

level goal, which is the only one that is a primitive literal, and rederives as much of the goal structure as is

still relevant. In this very simple illustration, no old goals were reconstructed. Usually, many old goals will

be reconstructed.

The TMS method can be used in order to avoid some of the computation of reconstruction. In order to

use it, the derivation of a goal must be stored with the goal. For instance, with

executable (put-down (block6)) the system associates the tree
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executable (put-down (block6))
pending-goal (not (holding (block6)))

pending-goal (holding (block37))
holding (block6)
not (block37=block6)

holding (block 6)

which records its derivation via the rules listed earlier. In order to update the state, the TMS method first

retracts holding (block6) because it is mentioned in the operator's del-list. Since this literal occurs in

the derivations of both pending-goal(not(holding(block6))) and

executable (put-down (block6 )), those two literals are retracted as well. Next the system adds

not (holding (block 6) ) because that literal is mentioned by the operator's add-list. The rules run, and

the literal executable (pick-up (block37) ) is derived. This demonstrates how the TMS method can

maintain goal structures.

The TMS method is more memory intensive than the reconstruction method. it requires that the

problem solver remember all the derived literals from the old state and moreover, it should remember the

derivations of each literal as well. What would happen if memory failed? If a literal was completely

forgotten and the literal was going to be retracted anyway, then it does not matter that it was forgotten. On

the other hand, if the literal was not going to be retracted, then it must still be derivable from literals in the

new state, so the rules will end up deriving it. So forgetting a literal does no harm. What if the literal is not

forgotten, but its derivation is, or worse yet, only part of its derivation is forgotten? The problem solver must

somehow detect this and treat the whole literal as if it were forgotten. If it can do that, then the literal and its

derivation will be reconstructed if necessary and retracted (via forgetting) otherwise. Although the TMS-

based method requires memory storage for the derivations, it is quite robust because it can easily reconstruct

forgotten derivations.

From this perspective, the TMS method and the reconstruction methods are just two ends of a

continuum. If all the derived literals can be recalled, then the faster TMS method is used. If none of the

derived literals can be recalled, then the slower reconstruction method is used. If only some of the derived

literals are recalled, then TMS-based retraction and reconstruction are used jointly to produce the appropriate

goal structure. This is a seamless combination of reconstruction and recall.

Notice that the primitive literals cannot be forgotten. If they are, then the whole scheme falls apart,

since there are no rules for deriving them from other literals. 5 However, problem spaces are usually designed

5 Acwally, some literals can be both primitive and derived because they appear in both the add-list of operators and the conclusions of
rules. These literals could be reconstructed if forgotten, at least in principle. They will continue to be ignored in order to simplify the
discussion.
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so that the primitive literals model unforgettable information. For instance, the literals that describe the

current state are usually chosen to correspond to perceptually available information (e.g., which block is my

hand holding?), and are thus unforgettable. The top level goals are assumed to be either perceptually

available (e.g., from instructions written on a card handed to the subject) or very familiar. Literals that reside

unchanged in all states (e.g., not (block37=block6)) correspond to common sense or well-learned

facts.

The next step in the argument is to show that this mechanism for maintaining goals solves the three

problemf mentioned in the introduction: capacity limitations on goal storage, non-LIFO access to goals, and

blending situated and planned action.

The capacity problem is that many computations seem to require more goals than the human short-term

menory system has room to store. At first glance, it seems that this mechanism completely solves the

capacity problem. As long aq the top level goal is held in long term memory, any other goals that are

forgotten can be reconstructed. However, if we take an extremely simple model of the short-term store, such

as a buffer with 7 cells, then it is possible for the goal reconstruction mechanism to fail. As goals are

reconstructed, the rules generate literals that may be needed a few moments later by other rules. If more than

7 of these literals are generated, then some may be lost from memory before being used. It is important to

note, however, that although the number of literals requiring storage in STM may be large, they do not have

to be stored there for very long. It is well known that the number of chunks that can be recalled from STM

varies inversely with the delay between storage and recall. The simple buffer model does not reflect this,

although more complex buffer models could.

A standard model with the appropriate decay properties is based on spreading activation. In this

model, gaining access to a goal requires that the goal exist in memory and that its activation level be above

some threshold. In order to recall an old goal, activation can be spread up through the derivation trees

starting with the literals that stand for perceptual chunks (which are presumably highly active as they are the

current focus of visual attention) and the top-level goal. This corresponds to normal retrieval of an old goal.

If the goal is inaccessible via spreading activation, then it can be reconstructed. Some elements of its

derivation tree will be accessible (in the worst case, only the leaves can be retrieved). These trigger rules

whose execution creates new literals that are copies of the forgotten ones. In most spreading activation

theories (e.g., ACT* -- Anderson, 1983), newly created elements are given high activation. Although

activation decays rather rapidly at first, as long as the goal reconstruction process occurs rapidly and without

interruption, it should be possible to reconstruct large numbers of goals. Thus, the initial impression that a
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TMS-based mechanism solves the goal capacity problem is actually correct, although there appear to be

some subtle interactions with the operation of the underlying memory system.

The second problem mentioned in the introduction is that people sometimes execute goals that are not

the most recently created pending goal. In LIFO architectures, this is not possible. The architecture sketched

in this section is not necessarily a LIFO architecture. If the rules are run to quiescence, then they will find all

pending goals whose preconditions are met and mark them as executable. The problem solver is free to

choose any of them for execution.

The last problem mentioned in the introduction is to find a way to blend situated action and planned

action. In a single-agent world, the above mechanism suffices. If all goals are forgotten during a state

change, then the agent can be said to have no state, so it is a situated-action agent. The calculations that are

performed by goal reconstruction would have to be performed by any agent possessing the same knowledge,

and the above mechanism makes it seem that the intermediate results of these calculations must be stored as

literals. However, one can replace the rules by gates in a combinatorial logic and the literals by wires

connecting gates. Seen this way, the goal reconstruction calculation requires no more state than Agre and

Chapman's (1987) Pengi or Brook's (19??) subsumption architecture. So in a world where the only source

of state change is the agent itself, the TMS-based goal maintenan'e mechanism seamlessly blends situated

and planned action.

If the world has multiple sources of state changes, then the agent must supplement the add-list and

del-list with perceptual operations. These have the same effects as the lists do, in that they cause addition

and retraction of literals. The TMS propagates these through the goal structure in the usual way. Thus if

another agent helps our agent by satisfying one of our agent's pending goals, then perception will add a

literal to the state, and the TMS will ultimately retract that goal. Similarly, if a hostile agent undoes a goal

that our agent previously accomplished, then the un-outing mechanism of the TMS will quickly reinstate the

goal. 6 Thus, the agent will behave adaptively in a changing world where not all of the changes are under its

control. The TMS-based mechanism is adequate for blending situated and planned action even in a multiple

agent world.

In addition to solving the three problems mentioned in the introduction, the TMS-based goal

6This TMS-based goal maintenance mechanism does not model the process of deciding which executable action to execute. This is
called action arbitration by Agre and Chapman (1987) and Brooks (1990). Their systems seem to use some ad hoc priority-based
system to do action arbitration. Presumably, such a system could be used here as well, or a more complex system, like the goal
preferences of Prodigy (CarboncU, Knoblock & Minton, 19??), could be used instead.
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maintenance system bears striking similarities to the overall human memory system. As noted earlier, when

people are distracted from a task by a long telephone call, they have the ability to reconstruct the goals and

other internal state that they have forgotten. On the other hand, if they are not distracted, then they do not

require similarly extended periods of time for reconstructing their state after each action. Moreover, there

seems to be no sharp boundary between human retrieval and reconstruction. The seamless combination of

TMS and reconstruction methods also has the same lack of a sharp boundary. It is well known that human

recall is facilitated by making the perceptual environment at recall similar to the perceptual environment at

storage. This is consistent with the TMS/reconstruction combination, where the accuracy and availability of

the whole state depends strongly on the accuracy and availability of the primitive literals. In short, the

combined TMS-reconstruction method of state updating is qualitatively similar to human memory, at least as

far as problem solving is concerned.

2.3. Goal reconstruction in precondition-based problem solvers

The simplicity of the TMS-based goal maintenance system is due to its use of rules for reasoning about

goals. Although this is elegant and allows certain issues to be presented clearly, rule-based represenfqtic;ns of

planning knowledge can be awkward and redundant, especially for c=njunctive goals. A more widely used

technique represents that knowledge in ihe operators themselves as a set of preconditions on the operator.

This is the representation used by Strips (Fikes, Hart & Nilsson, 1972) and its many descendants. The goal

reconstruction capability of the Amord-style problem solver of section 2.2 can also be implemented in a

Strips-style problem solver. The next few paragraphs demonstrate this.

An example will help in comparing Amord-style and Strips-style problem solvers. In a Strips-style

problem solver, the pick-up operator could be represented as:

Name: pick-up
Arguments: X
Preconditions: not (holding (Y))
Add-list: holding (X)
Del-list: on(X,Z)

This representation replaces the rules listed earlier for the Amord-style reasoning about goals. For instance,

one of the rules mentioned earlier says

If pending-goal(holding(X)) and holding(Y) and not(X=Y),
then pending-goal (not (holding (Y))).

Let us use the Strips representation to do the example mentioned earlier, where the goal is

holding (block37). The system searches for an operator whose add-list matches the goal. In this case,

pick-up is found. Next, the preconditions are checked. In this case, the precondition is false, because

holding (block6) is true. Whenever a precondition is not satisfied, the system makes it into a subgoal.
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Thus, the system makes not (holding (block6) ) a goal. Clearly, this Strips-style reasoning has

achieved the same effect as the inference ruic from the Amord-style problem solver. The knowledge

representation, however, is more parsimonious.

Most Strips-style problem solvers do not use a TMS for maintaining their goal structures. In fact, we

do not know of any that use a TMS. Instead, they use a goal tree, or more frequently, just a part of the tree

arranged in a goal stack. Although less elegant than the TMS-based method, goal maintenance with a goal

tree has all the same properties. The next few paragraphs are a point-by-point comparison of the goal tree

and TMS methods of maintaining goals.

In TMS-based maintenance of goals, the derivation of each goal must be stored so that retraction and

un-outing can function correctly. Instead of a derivation, a tree-based goal maintainer uses the goal tree

itself. Instead of a TMS data structure indicating that pending-goal (not (holding (block6)) ) was

derived from pending-goal (holding (block37) ) and other literals, the goal tree has a data structure

indicating that pending-goal(not(holding(block6))) is a subgoal of

pending-goal (holding (block37) ) caused by an unsatisfied precondition.

In TMS-based maintenance of goals, executing an operator first causes all satisfied goals to be

retracted. In tree-based maintenance, the exact process of finding satisfied goals seems to vary from one

problem solver to the next. However, the gist of the method is to check goals in the tree and see if the goal's

literal is now in the current state. If it is, then that goal is satisfied and all its subgoals are now irre'-vant.

These goals are marked appropriately or removed from the tree. If a goal stack is used instead of a goal tree,

this phase can be accomplished by popping the stack.

After the satisfied goals have been dealt with, the TMS method infers new goals using its inference

rules, whereas the tree-based method infers new goals using the operators' preconditions.

One of the advantages of the TMS-based method of goal maintenance for human model is the seamless

integration of reconstruction and reai. The same advantage can be obtained with a goal tree. If parts of the

goal tree are forgotten, they can be reconstructed by starting at an ancestor goal and using the usual

precondition-based subgoal creation method. If subgoals are created that are equal to ones that have not been

forgotten, then the new tree can be attached at this point to the tree rooted at the recalled subgoal. The goal

indexing mechanism used in GPS (Ernst & Newell, 1969) and most of its successors will cause this

reattachment (which is equivalent to un-outing) to happen automatically. Thus, in most cases no new

mechanisms need to be added to the system in order to achieve a qualitative similarity to human behavior.
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This section has shown that goal reconstruction is a capability that can be easily added to a problem-

solving architecture. Moreover, the goal maintenance mechanism shifts seamlessly from recall to

reconstruction of goals, which makes its performance qualitatively similar to human behavior.

2.4. Goal reconstruction in procedure-following systems

In our vocabulary, a goal serves two purposes. It is both a description of a desired state of the world,

and it is a part of the control structure of the problem solver. For some tasks, the description of desired states

mention features that cannot be detected by unaided perception. If a person has already washed a piece of

medical glassware 6 times in tap water, then washing it 6 times in distilled water will achieve a state of

cleanliness that is not distinguishably different from its current state. The only simple description of the goal

to be achieved is just the procedure for achieving it: wash the glassware 6 times in distilled water. A large

number of tasks have this property. After a house is built or a tax form is filled out, the results look to the

visible eye like a house or a tax form. But the quality of the house or the tax accounting can vary widely

depending on which procedures were followed in achieving it. Properly cured concrete looks exactly the

same as an improperly cured concrete. The only way to know if the properly-cured-concrete goal has been

met is destructive testing (which partly undoes the goal of having properly cured concrete) or checking that

the proper curing procedure has been followed. Man)' goals in human culture have the property that they are

partly specified by the visible state to be achieved and partly specified by the procedures that should be

followed in achieving them.

Although most problem-solving architectures can only accept goals that are specified by descriptions

of the desired state, Sierra is one that is specifically designed to follow procedures (VanLehn, 1987;

VanLehn, 1989a). Recently, it has been augmented with the ability to accept goals specified as desired

states. The resulting architecture, called Teton, is documented in an appendix to this chapter.

When goals are specified by procedures, reconstruction of goals becomes more complicated. Teton

can handle some cases (but not all) with a fairly simple mechanism. Teton uses a Strips-like operator

representation for procedural knowledge. In addition to the usual slots for preconditions and so forth,

operators can have a shortcut condition. This condition is checked just before executing an operator. If it is

true, then the operator is not executed but its goal is marked "satisfied" anyway. For example, in order to

reconstruct the goals of the following partially completed multiplication problem,

336
x 208

2682
7200



18

Teton would run the multiplication procedure which causes an operator, call it

Single-digit-mult iply, to be instantiated for each of the three digits in the multiplier, 208. Suppose

the operator has a shortcut condition that is true if the partial product row to be filled already has some digits

in it and there is something written underneath that row (i.e., another partial product row or a bar). In the

case of the units digit instantiation of Single-digit-multiply, the shortcut condition is true, so the

operation is marked completed. However, the shortcut conditions are false in the case of the tens digit, so

execution resumes with that operation. Thus, Teton reconstructs goals then judiciously takes "shortcuts"

instead of executing some of them.

As a quick check on the plausibility of this type of processing, we took a protocol from a subject who

was asked to complete the partially solved problem shown above. She said:
Airight. Since there are two columns done [referring to the partial product rowsl, I know that the first digit on

the right hand side of the bottom number has been multiplied. Um. I would start the, urn, since the second
column is a zero, somebody has filled in the zero. I would now go to the third digit on the bottom column and
do all the multiplication involved there. Two times six is twelve, two times three is six plus one iq seven, two
times three is sL, and then I would do the addition starting from the right hand side, and get the answer.

The first sentence corresponds to taking the shortcut on the Single-digi: -muir. iply of the units digits

of the multiplier. The second sentence corresponds to the execution of the Si I e- ii 'it -:T -I t -1 _'v of

the tens digit. The rest of the protocol corresponds to execution of S in Ie i_-:Ltip-y for the

hundreds digit. This protocol corresponds quite well w ith the type of goal reconstruction used by Tet ,n.

Shortcut conditions are task-specific knowxledge about how, to reconstruct specific goal trees.

Sometimes people may have to learn shortcut conditions, and ,ometinies they may be able to deduce them

from general principles in the midst of reconstructing a goal.

There is another type of task-specific knowledge about goal reconstruction that people sometimes use.

If one can anticipate forgetting some goals, say because the phone is ringing and one intends to answer it,

then one can take steps now that will make reconstruction much easier to do later. For instance, if one is

interrupted by a ringing phone in the middle of adding up a long column of figures, one can write the subtotal

down and mark the last number added in. This will enable reconstruction later. Teton does not handle this

sort of knowledge. It would be a fascinating behavior to simulate, because the agent must have a crude

model of forgetting in order to plan ways to prevent forgetting from happening. It also must be able to tell

what aspects of its state are worth saving, so it must understand its capabilities for goal reconstruction.

As usual in cognitive modeling, we can model the most common cases but the other cases are orders of

magnitude harder to model. Goal reconstruction is easily modeled when goals are descriptions of visible
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aspects of the state, as in the case of the Amord-style problem solvers and the Strips-style problem solvers.

When goals are partially procedures, then the shortcut conditions of Teton can handle some of the cases.

However, the remaining cases of goal reconstruction present tricky problems that are likely to resist

modeling for some time.

3. Arithmetic learning: An application requiring perception

The preceding account of goal reconstruction ignored perceptual processing and assumed that its

output was available in the form of literals in the current problem state. Part of the novelty of situated action

is the claim that perceptual processing handles most of the load in guiding activity. In this section, we

discuss how to integrate perception and problem solving in such a way that goal reconstruction retains all the

good properties that it had when problem solving was based on problem spaces.

This investigation grew out of a study of how people learn arithmetic, algebra equation solving and

other written procedures. There is fairly good evidence that students pay close attcntion to the visual syntax

of the writ-n expressions and may even induce visual features into their procedures that the teacher did not

intend them to learn (VanLehn. 1989a; VanLehn, 1986). This reliance of visual features is the key to

explaining many otherwise mysterious phenomena, as the following example illustrates. When students are

introduced to borrowing, teachers usuaziy use the simplest subtraction problems they can -- ones with just

tvo columns. Here is a borrowing problem that has been solved in the manner taught in many American

textbook,,:

2 14
21 A

-18
1 6

Some students noutce that the decrement action takes place in the leftmost column of the problem, and induce

that all such actions should take place in the leftmost column. This leads them to make errors like the

following one:

1 18

- 1 9

219

Early version of Sierra simply postulated a problem space that includes leftmost and other relations that

students induce. It would leave out relations that they did not seem to play an), role in their learning. Thus,

the initial state would contain the literal leftmost (column3) but it would not contain the literals

rightmost (columnl) or hundreds (colurnn3). Although this allowed Sierra to explain the

systematic errors of thousands of students, it also pushed the mystery of learning back one more level. Sierra
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explained how procedures are learned, but what explains how the problem spaces are learned? This

comment is not meant to denigrate the accomplishment -- all models of learning bottom out on some kind of

assumptions about prior knowledge, and most models of procedure acquisition bottom out on the problem

space, just as early versions of Sierra did.

In the case of mathematics, it is particularly important to explain problem spaces rather than assume

them. The problem space embeds knowledge of mathematical notation, which is something that students

learn (and mislearn!) in school. Whereas someone might naturally think of a column of 3 wooden blocks as

something that is important enough to see and record in the problem space as a composite structure, such as

stack (block37, block 6, blockl3) , the habit of seeing a subtracton problem as columns instead

of rows is something that has to be learned in school.

As a first step in determining how people acquire mathematical problem spaces, and know ledge of

notational syntax in particular, it is wise to determine what the representation of that knowledge is like. This

makes it easier to formulate learning models for notational knowledge.

Pursuit of these goals led us to the problem of devising a representation of notational knowledge that

could be nicely integrated with mathematical problem solving. The first part of this seCtion di\cu, some

constraints on the representation of notational/perceptual knoledge. These were uncovered by trvmg

simple approach and discovering that they were inadequate. The second part of the section presents a , stem

that seems to meet all the constraints. Moreover, its structure sheds sonic liht on the disnctinon hct,cen

situated and planned activity.

3.1. The need for global parsing

The first attempt at representing notational/perceptual knowledge was to assume that task-spciic

terms in the problem space were defined by task-general terms using standard first-order log I hUN,

cc-1-r.in (X) is defined to be a sequence of three vertically aligned cells, and ceI- (Y) is defined to be a

digit, a blank or a digit that has been scratched out and written over. The cc -u'- (x:) definition miLht t-

represented formally as:

column(X) ::= part-of(X,C1) & part-of(X,C2) & part-of(X,C3) &
cell(Cl) & cell(C2) & cell(C3) &
sequence(X) & first(X,C1) & last(X,C3) & middle(X, C2) &
ordered(X,C1,C2) & ordered(X,C2,C3) & ordered(X,C1,C3) &
adjacent(CI,C2) & adjacent(C2,C3)

Learning mathematical notation is assumed to consist of learning definitions like this one. There are a

variety of machine learning algorithms sufficient for learning such concepts from examples and a given sci of
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primitive concepts (e.g., Winston, 1975; Vere, 1975; VanLehn, 1987). In this case, the given concepts are

perceptual primitives, such as adjacent (X, Y). This is not the large loophole that one might imaine

because the set of perceptual primitives needed for mathematical symbol manipulation is surprisingly small.

For instance, one vocabulary sufficient for arithmetic and algebra required only ten predicates (see pg. 183,

VanLehn, 1983). A much more complex vocabulary would be needed for, say, high school geometry or

mechanical drafting.

It might seem that the major difficulty in this approach to explaining the acquisition of mathematical

problem spaces would be determining how people acquire concepts such as column. In fact, this approach

failed utterly before even getting to that stage. Even when definitions are constructed by hand, it proved

impossible to find definitions that would perform like people do. For Sierra, the visual world was

represented as a Cartesian plane with characters centered at particular x-y coordinates. One problem was to

get a definition of "algebraic formula" that is true of "2+3" when it stands alone in the plane, but to be false

of "2+3" when it is embedded in "2+3x." Another problem is that adjacent (3, x) should be true of (a)

b low and false of (b) despite the fact that the two symbols are closer in (b) than in (a):

a. 3 x = y

b. 3 y =x
x y/3

The problem here is that an interpretation of a subset of some mathematical symbols is acceptable only if it

participates in a global interpretation which includes all the symbols. This is analogous to many English

words, such as "run", which can be interpeted either as a noun or a verb depending on the globlal

interpretation of the sentence it is a part of. Compare "I'm not going to run today" with "I had a good run

today." In the analysis of both English and mathematical syntax, better techniques are bas, J on context-free

grammars or something like context-free grammars.

3.2. Grammatical definitions of' task-specific problem representations

In order to use context-free grammars as a representation for knowledge of mathematical notation, a

few augmenations to the standard formalisms were needed. For instance, because mathematical notation is

two-dimensional, rules need to indicate whether their constituents are arranged horizontally, vertically or

diagonally. Table 3-1 shows a simplified grammar for arithmetic problems.

This grammatical formalism accomplishes what the first-order logical definitions of terms could not. It

can properly parse arithmetic and algebraic expressionse. Unfortunately, a very nasty problem was
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Table 3-1: A simplified grammar for arithmetic notation

1. Problem <-- Sign ColumnS ; horizontal
2. Sign <-- +

3. Sign <-- -

4. Sign <-- X
5. ColumnS <-- Column ColumnS ; horizontal
6. ColumnS <-- Column
7. Column <-- Cell Cell Cell ; vertical
8. Cell <-- Digit
9. Cell <-- Blank
10. Digit <-- 1

11. Digit <-- 2

encountered when Sierra's problem space machinery was replaced with a parser for this formalism.

The problem occurs when states change. For Sierra, state changes are always due to writing a new

symbol on the visual page. When this happens, there is usually not much change in the parse tree. 7 Filling a

column's answer in a subtraction problem only effects one small part of the parse tree -- that which concerns

the particular blank cell that is filled by the new symbol. Sometimes, however, writing a single symbol has

effects on other parts of the tree. Writing one symbol changes "2+3" into "2+3x," which changes the

interpretation of the 3. In order to allow for arbitrary changes in the state, Sierra ignores the old state's parse

tree and constructs a new one for the current state. This has the unfortunate side-effect of making obsolete

most of the goals held in Sierra's working memory because most goals have arguments that mention nodes in

the parse tree. When the visual scene is parsed anew, a whole new parse tree is produced, but the goals

continue to mention nodes from the old parse tree. By parsing the current state, Sierra makes obsolete all the

goals with objects as arguments.

7A parse tree is a record of the derivation or parsing of a particular sentence, or in this case, of a particular mathematical expression.
A parse tree for the vertical form of 2+1 when parsed by the grammar of table 3-1 would be:

Problem -- Derived via rule 1 from:
Sign -- Derived via rule 2 from:

+ (perceived)
ColumnS -- Derived via rule 6 from:

Column -- Derived via rule 7 from:
Cell -- Derived via rule 8 from:

Digit -- Derived via rule 11 from:
2 (perceived)

Cell -- Derived via rule 8 from:
Digit -- Derived via rule 10 from:

1 (perceived)
Cell -- Derived via rule 9 from:

Blank (perceived)
where indenting represents the hierarchical relationships in the tree.
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Several years ago, this seemed like a nasty technical problem with no important theoretical

implication. It was circumvented with some subtraction-specific hacks and banished to appendix 8 of the

first author's dissertation (VanLehn, 1983).

3.3. Annotated grammars: Another version of situated action

In the intervening years, the situated action paradigm has begun exploring the idea that people rarely

plan by building up stacks or trees of pending goals. Instead, they parse the situation so as to "see"

possibilities for actions. Thus, goals are not held in memory, but perceived in the situation.

In order to better understand the implications of the situated action view, we implemented an

architecture, called Rocky. Instead of a procedure, Rocky has a grammar that is just like the one used by

Sierra to represent knowledge of mathematical notation except that it has a few extra annotations. For

instance, the rule for parsing a column, rule 7 in table 3-1, is annotated to indicate the numerical relationship

among its the cells in the column:

7. Sub-column -- > Digit I Digit 2 Digit 3  vertical
where: Digit3 = DigitI - Digit2

We call this kind of knowledge representation an annotated grammar. With proper interpretation, it seems

quite likely that an annotaLd grammar can generate actions and solve problems just as well as a procedure.

By getting rid of goals, the annotated grammars approach solves the problem of goals becoming

obsolete. Each time the state changes, a new parse tree is constructed and nodes that are capable of having

actions taken on them are marked as executable. The resulting parse tree quite literally wears the

possibilities for action on its sleeve. Thus, an annotated grammar not only parses the visual plane, it also

does all the reasoning that would normally be done by the rules of section 2.2 that compute with literals

named goal and executdble.

Annotated grammars seem to implement what Suchman (1987) had in mind when she said, "We

generally do not anticipate alternative course of action, or their consequences, until some course of action is

already under way. It is frequently only on acting in a present situation that its possibilities become clear."

(Suchman, 1987, pg. 52, original emphasis)

Unfortunately, the annotated grammars approach ran into grave difficulties when we tried to

implement some of the less visually oriented mathematical procedures. For instance, consider a common

procedure for solving multiplication problems, which involves skipping zeros in the multiplier, as in the

following problem:
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2345
x 1204

9380
469000

+2345000
2823380

There are four multiplier digits, but only three partial products. In order to properly pair off the multiplier

digits and the partial products, an annotated grammar must encode what amounts to a right-to-left traversal of

the multiplier digits. Similarly, it is difficult to differentiate the zeros that are inserted in order to vertically

align the partial procedures from the zeros produced by multiplications (see the second partial product

above). Counting or some other kind of iteration is needed in order to determine these mapping from the

visual plane. This cannot be done in the representation for grammars used by Rocky. Although the

representation could perhaps be augmented, this would go against the situated action paradigm, which tries to

obtain action without explicit e.,ecution of procedural knowledge, such as an iteration across a string of

digits.

The underlying problem is that the only way to properly understand some problem states is to know

how they were derived, and this historical information is sometimes not present in the perceptual

information. In the task of washing medical glassware, one cannot tell by looking at a piece of glassware

how many times it has been washed. An annotated grammar cannot perform this task.

In retrospect, it appears that Rocky's version of situated action is too extreme. It tries to keep no

historical information about the problem solving and instead work only with what it can infer from the

current situation. This is a rather implausible hypothesis, for surely a person in the middle of a problem

would recall and use information about immediately preceding actions and decisions if such historical

information were useful. As argued earlier, most architectures based on problem spaces have this property

(or could have it given a few simple augmentations). They recall goals when they can and reconstruct them

otherwise. Their reconstruction proceeds from primitive literals, which often represent outputs from

perceptual processing. Somehow this useful and psychologically plausible property has been lost in the

attempt to deepen the model of perception so as to allow for task-specific knowledge about mathematical

notation.
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3.4. A TMS-based parser

Let us temporarily abandon the parsimony of unifying procedures and grammars and return to the old

assumption that procedures and grammars are two distinct bodies of knowledge. This means that there are

two types of internal state, a parse tree and a goal structure. The parse tree nodes correspond to the objects

that would exist in the current problem state if a problem space approach were being used.

This means we must solve the updating problem wherein all goals that refer to parse nodes become

obsolete with each state change because the parse trees for different states share no nodes. What we would

like is an updating technique that will allow parse trees from consecutive states to share as many nodes as

possible. Only parse nodes for parts of the visual plane that are "really new" would be built. However, the

definition of "really new" depends on the task.

A solution that we think will work (it has only been partially implemented) is based on the same

TMS-reconstruction method that was used successfully with regular problem spaces. The key idea is to note

that parsing a visual scene is a special kind of inference, where grammar rules correspond to inference rules

and parse nodes correspond to literals. A TMS is used to retract only those literals (parse nodes) that are

changed, directly or indirectly, by the writing of a new symbol on the visual plane. In order to make this idea

work for mathematical notation, however, we must be very careful about the representation of blank space in

the visual plane.

As a running example, consider the change from "2+3" to "2+3x." The status of the 3 should be

changed, but the parse node for the whole formula should stay the same. Suppose that the grammar is just

sum -- > term + term horizontal
term -- > term term horizontal
term -- > 2
term -- > 3
term -- > x

Let parse nodes be represented by unary ground literals. The predicate is the category of the constituent and

the argument is a region. For concreteness, let a region be represented by four numbers in square brackets,

corresponding to the left, top, right and bottom boundaries of the region. Thus, term ( [5, 23, 25, 13] )

represents a term occupying a certain region. With these definitions, the firsz grammar rule becomes the

following inference rule.

If there are three regions, RI, R2 and R3 such that
term(Rl) & plus(R2) & term(R3) &
right-boundary(Rl) = left-boundary(R2) &
right-boundary (R2) left-boundary(R3) &
region C is the union of regions R1, R2 and R3,

then sum(C).
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The visual plane is represented by primitive literals and the grammar (inference) rules create derived literals.

In order to make the TMS-reconstruction method work, literals that mean the same thing, relative to

the task, should be syntactically equal. Recall that reconstruction continues to run inference rules until no

new literals are produced. "New" is defined relative to syntactic equality. If a literal is produced that is equal

to an existing literal, then we say that a new derivation was found for an old literal; a new literal was not

produced. Equality of literals depends crucially upon the definition of regions. Let us define the too

bo mdc,- of a refior to bc halfway betw, en that region and the next region in the positive y-direction If there

is no such region, then the boundary is set at infinity, which is represented by "*." Define the bottom, left

and right boundaries similarly. Thus, "+" in the expression "2+3" would be represented by the literal

plus ( [ 35, *, 45, * 3 ) because the top and bottom boundaries are at infinity.

With this definition, the literal sum ( [ *, *, *, *I ) represents either "2+3" or "2+3x" written alone on

a page. This makes the two terms syntactically equal, which is just what we want. A goal whose argument

refers to "2+3" will not be made obsolete by state change. Both before and after the state change, the goal's

argument will be surn( [,*, *, * ).

Let us see how the TMS handles the state change from "2+3" to "2+3x." The parse tree for "2+3"

consists of the following literals:

1. aum([*,*,*,*])
2. ter( [*, *, 35,*)
3. two([*,*,35.*])
4. plus([35,*,45,*])
5. term([45,*,*,*])
6. three([45,*,*,*])

When the writing operator puts an "x" in region [55,*,*,*], it must retract primitive literals whose regions

have been overlaid and assert new literals with smaller regions. In this case, the literal on line 6 above must

be retracted and a new literal three ( [45, *, 55, *] ) is asserted. Retracting the literal on line 6 causes

the TMS to retract the literals on lines 5 and 1, since their derivation depends on the literal of line 6.

However, the addition of thc new literals for "x" and "3" causes reconstruction, which leads ultimately to a

new parse tree, which is:

1. sumlt*,*,*,*])
2. term([*,*, 35,*])
3. two([*,*,35,*])
4. plus ([35, *, 45,*] )

5. term([45,*,*,*])
7. term([45,*,55,*])
8. three([45,*,55,*])
9. ter([55,*,*,*])
10. x([55,
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The literal on line 5 has been reconstructed. Although it has a different derivation now, it occupies the same

region as before, so it is equal to the old version. The un-outing mechanism of the TMS will detect this and

cause the literal on line I to be reinstated.8

It appears that the updating problem has at last been solved. By using a TMS-based method, only

parse nodes that are truly different are changed. This means that only goals whose arguments have really

changed must be reconstructed.

Moreover, by using the TMS-based method of updating, we obtain the same seamless blend of recall

and reconstruction that characterizes human recall behavior. If parts of the parse tree are forgotten, then the

TMS-based updating method will simply reconstruct them without even "noticing" that they were forgotten.

3.5. Summary: When is reasoning really perceptual?

In this section, we have descended into the ugly details of mathematical notation in order to find out

what would happen if the problem space approximation was dispensed with and something more like real

perception was modeled. It turned out to be much more difficult than it first appeared. There were two

interacting sources of difficulty. The first was the fact that mathematical notation cannot be defined locally,

but only by finding the most globally coherent parse of the visual plane.

The second difficulty occurs when updating the state after an operation is executed. This problem,

which includes the frame problem of Al, can be solved in the problem space framework using Strips

operators and a TMS. However, it is more difficult when perception is modeled. The global coherence of a

perceptual parse means that the individual parts of the parse depend on each other in subtle ways. A change

to one small piece of the visual plane can ripple through the parse and change large amounts of it. After a

noble but ill-fated attempt at ducking the problem (the annotated grammars approach), a method was found

for representing mathematical notation so that the propagation of changes died out quickly. This allowed

perceptual parsing to be updated by roughly the same TMS-based method that successfully updates state

changes when problem spaces are used.

Stepping back still further, one sees that the two computations, one supposedly procedural and the

other supposedly perceptual, are nearly identical. The perceptual calculation updates a "state," which is a set

'he old parse tree, which treats "2+3" as a sum. is still available, but now is has sum ( [*, *, *, 551 ) as its root instead of
su-( [*, *, *, * I This literal does not participate in a parse that overs all the symbols. In order to avoid generating it, the
inference mechanism should only produce literals that participate in the derivation of a literal whose argument is *,*,*,*]. This
restriction would be simple to implement in a backwards chaining control structure; a forwards chainer would require a filter.
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of existing objects and their relationships to each others. The procedural calculation updates a "goal

structure," which is a set of desired things and their relationships to each other. In order to obtain a

reasonable solution to the frame problem, the same TMS-based method is used to update both the state and

the goal structure. This method also yields robustness to forgetting, even the kind of massive forgetting

caused by answering long telephone calls.

From - computational point of view, nearly the only way to tell that one calculation is perceptual and

the other is procedural is to read the English names of the predicates, which is something that only a human

observer can do. The situated action theorist would probably call the whole calculation perceptual.

Traditional problem-solving theorists would call the whole calculation problem solving. Planning theorists

would call it planning or perhaps reactive planning. As far as we can see, what you call it does not change

what it is and does. As with many of the great binary distinctions in Al (e.g., procedural vs. declarative,

logic vs. knowledge engineering), the distinction between situated action and planned action may turn out to

be too ill-defined to be useful.

4. Discussion: Multiple levels and extra capabilities

Two claims are made in this chapter. One claim is that goal reconstruction solves at least three

problems: allowing intelligent problem solving within a limited capacity store for goals, providing non-LIFO

access to goals, and creating a seamless blend of situated and planned action. The other claim is that most

current problem-solving architectures already have the capability to do simple goal reconstruction or could

easily add that capability with a few changes. These are primarily computational claims, although we have

indicated at several points the similarities of goal reconstruction and human cognition, and particularly the

way a TMS-based goal maintenance system mimics the way human memory blends recall and

reconstruction. Most of this section discusses the psychological status of goal reconstruction, but first we

present one further claii,

Goal reconstruction is useful in building Al systems. This claim is based on our experience with our

newest problem-solving architecture, Cascade. Cascade is a simplified version of Teton. The major

simplification is that it can only represent monotonic state changes (i.e., all the operators have empty

del-lists). While constructing an expert system in Cascade for solving physics problems, we discovered that

goal reconstruction was quite useful during debugging. The usual cycle during debugging is to try a

computation, detect a mistake, find the buggy piece of knowledge, correct it, and redo the computation. Goal

reconstruction makes redoing the computation much faster because the problem solver can begin more-or-
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less from where it left off. We are currently adding a learning engine to Cascade that will act roughly like a

programmer would in debugging the knowledge base. We suspect that goal reconstruction will aid the

learning engine just as it aided the programmer. If our experience generalizes, then there are some

unexpected practical benefits to adding the little bit of extra code to problem-solving architecture that allows

it to reconstruct goals

It is time to address the psychological status of goal reconstruction. Is it a part of the real human

cognitive architecture? Newell (in press) and Pylyshyn (1984) define the cognitive architecture to be those

parts of cognition that are innate, subject-universal (i.e., common to all subjects) and cognitively

impenetrable. We think that goal reconstruction is subject-universal, but neither innate nor cognitively

impenetrable. For instance, instructions to the subject can probably cause them to modify the way they do

goal reconstruction, which would imply that goal reconstruction is cognitively penetrable and hence not a

feature of the true cognitive architecture, according to Pylyshyn (1984). Thus, computational architectures

such as Teton that have goal reconstruction built into them are not good models of the cognitive architecture.

A better computational model would represent goal reconstruction as knowledge -- a program in the model's

library.

However, there are problems with modeling goal reconstruction as a cognitive procedure that has the

same form as a procedure for arithmetic or physics. A procedure for goal reconstruction would have to take

two inputs, the perceptual situation and the task's procedure (e.g., multiplication), and produce a goal

structure as output. This procedure would not only have to be a meta-level procedure, because it reads other

procedures and produces goal structures, but it would have to duplicate most of the functionality of the

architecture's interpreter. The goal reconstruction procedure would essentially be a copy of the interpreter

with a few extra lines of code added. This position is not only unparsimonious, but nearly self-contradictory.

How could a person learn a procedure that is a copy of their architecture when the architecture is not open to

introspection? In short, there are grave technological and developmental problems with the position that goal

reconstruction should be modeled as a cognitive procedure rather than a feature of the architecture.

The fact is that cognitive modelers are not free to set the architecture/program boundary anywhere they

want. Even the Soar group, with its emphasis on aligning Soar's architecture with the human cognitive

architecture, finds it convenient to provide a selection problem space as part of the bare, "innate" Soar. In its

format, the selection problem space is identical to problem spaces for acquired capabilities, such as a solution

procedure for a puzzle, but the selection problem space is considered to be a model of a capability that is

innate, subject-universal and cognitively impenetrable.
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Rather than label Soar, Teton and other architectures as failures, let us reconsider the research

objective proposed by Newell and Pylyshyn, which is to develop an computational architecture that models

all and only the human capabilities that are innate, subject universal and cognitively impenetrable.

First, not everyone cares about innateness, universality and penetrability. More typically, learning

theorists begin by defining a set of tasks that they intend to explain. For instance, Anderson (1983) chose

memory tasks (mostly), Berwick (1985) chose English syntactic analysis tasks and we chose problem solving

tasks. In order to explain the observed learning behaviors, the theories assume specific prior cognitive

capabilities. These are processes and structures that are assumed to exist at the time the tasks' acquisition

begins. For instance, one of Anderson's theory's prior capabilities is a semantic network with specific

functions for spreading activation and strengthening connections. Berwick's theory assumes a fixed parser as

one of its prior capabilities. We assume that goal reconstruction is a prior capability. Although all these

theorists seem to believe in the subject-universality of their prior capabilities, none have addressed cognitive

penetrability and their claims about innateness are made tentatively if at all. This is quite reasonable. The

objective of their investigations is an explanation of human behavior in the chosen task domains. Assuming

that a prior capability is innate or impenetrable adds little to the explanatory adequacy of their theories.

Logically, an explanation for some acquisitional behavior does not have to involve ascriptions of innateness

and penetrability, but only assumptions about what capabilities existed prior to the observation period.

If the cognitive theorist expresses the learning theory as a computer model, it often takes the form of an

architecture and some programs. Some of the theory's prior capabilities are expressed as programs and some

are features of the architecture. There is no logical reasoning why the prior capabilities must be part of the

architecture alone. Indeed, it is hard enough to formulate a detailed computational model without being

saddled with this superfluous restriction. What matters is developing a scientifically adequate explanation of

the phenomena, and that does not entail any particular alignment of prior capabilities with distinctions

inherent in the modeling technology.

Cognitive modeling has produced relatively isolated computer-based models, which, as Newell (1973)

points out, leaves psychology with no unified theory of cognition. It seems to us that there are three

approaches to a unified theory:

I. Reduce all the models to the lowest common denominator. A model of the lowest-level

cognitive processes is selected (or developed) and models of higher level processes are

(re-)implemented on top of them. ACT* is an example of such a unified theory of cognition.

As Anderson discovered, actually implementing a model of a higher level processes on top of a
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model of lower-level processes is technologically difficult, to put it mildly. Even if it could be

done, the model would produce unusably complex "explanations" of high level human

behavior. In order to achieve integration, this approach sacrifices the explanatory adequacy of

the higher level models.

2. Develop models at different levels, and indicate explicitly how they relate to each other. This

approach seems to characterize Anderson's recent computational models (Anderson, 1989).

Grapes and Pups are high-level architectures that omit spreading activation and other memory

mechanisms, but are intended to be homomorphic to ACT* in all other respects. Exactly how

these higher level architectures map onto ACT* is not made fully explicit, although it should be

if the ensemble is to qualify as a unified theory of cognition.

3. Develop models at different levels, where each level is a copy of the one below it. This

approach seems to characterize the Soar work (Newell, 1977). Soar has been used as a model

of lower level processes, such as stimulus response compatibility and transcription typing

(Rosenbloom & Newell, 1987; John, 1988), where its cycle times correspond roughly to the

frequency of updates to human memory. Soar has also been used for modeling computer

configuration, algorithm design and other higher level problem solving tasks (Rosenbloom et

aL., 1985), where its cycle times correspond to seconds or minutes of real time. In principle, the

primitives provided by the authors of these higher level models could be replaced by Soar

programs that are similar to those used in the modeling of the lower level processes.

We think that the second approach is the best. It allows models of higher level processes to be expressed in

any way that optimizes the clarity and productivity of the explanations. The third approach forces the

theorist to use the same architecture for both low level and high level models, and that seems analogous to

forcing the quantum physicist and the biologist to use the same mathematics for their models. In principle it

could be done, but the clarity of the models would be sacrificed.

In summary, Teton and similar architectures should not be viewed as claims about innateness,

universality or penetrabihty. They should be viewed as part of a model that explains problem solving and

skill acquisition. The model contains assumptions about what capabilities are possessed by subjects prior to

training. Some, but not all, of those capabilities are modeled by features of the architecture. The others are

modeled by pre-existing programs. Eventually, this model should be related via explicit mappings to models

of lower-level processes, notably memory, attention, perception and motor control.

The remainder of this chapter contains another explanation of the psychological status of goal
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reconstruction. We claim that goal reconstruction is a prior capability of problem solving, which means that

all subjects possess this capability prior to learning the given problem solving procedure. One way to see

what this means is by seeing what other prior capabilities would needed in a model of skill acquisition. The

following sections list capabilities that, in our estimation, are prior capabilities for the tasks usually studied in

the problem-solving literature: physics, blocks world, Tower of Hanoi, algebra, eight puzzle, etc.

4.1. Goal reconstruction

The key property that makes goal reconstruction a candidate for a prior capability is that it does not

have to be learned, or at least that it does not have to be learned each time a new procedure is learned. To

demonstrate this, consider a gedanken experiment. Suppose we train subjects in an entirely novel procedure,

being careful never to interrupt them while they are executing the procedure. When they have mastered it, we

perform the telephone test: we interrupt them in the middle of solving a problem, have them engage in an

interference task sufficient to wipe out goal memory, then have them resume their original task. Presumably,

they would all be able to reconstruct their internal state for this procedure, even though they had never done

reconstruction on this procedure before. This gedanken experiment shows that their reconstructive capability

was acquired prior to the acquisition of the procedure.

As the discussion in section 2.4 indicated, some cases of goal reconstruction seem to require task-

specific knowledge. These kinds of goal reconstruction would have to be acquired along with the task's

procedure. Although we claim that some goal reconstruction is a prior capability, we are not claiming that

all goal reconstruction is due to prior capabilities. Teton's architecture embeds specific claims about what

kinds of goal reconstruction are prior and what kinds would have to be learned.

4.2. Explanation of worked examples

Another capability that seems to come "for free" when one learns a procedure is explanation of worked

examples. A worked example is a problem that has been solved in such a way that a partial trace of the

solution process is available. Math and physics textbooks have many worked examples. Usually, the

textbooks print only the results of visible actions of the procedure, the actions that the students would write if

they were solving the procedure. Thc invisible actions, such as deciding which goal or strategy to pursue, are

usually left ouL Often the exact nature of the visible actions is underspecified, too. For instance, the

textbook might print an algebraic equation but not say what operation was used to produce it. Explaining a

worked example entails producing all the information that is necessary for solving the problem but has been

left out of the printed material.
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There is ample evidence that people can explain worked examples even when the procedure they are

using to explain the example is new to them (Chi, Bassok, Lewis, Reimann & Glaser, 1989; Pirolli &

Bielaczyc, 1989). This indicates that the ability to explain a worked example is a prior capability. That is,

after one has learned a procedure well enough to execute it, then one can automatically explain examples

with it as well. The converse may also be true (Chi, Bassok, Lewis, Reimann & Glascr, 1989).

It -ould be objected that explaining an example is exactly the same as solving the example's problem.

This is true only of simple cases. In more complicated cases, the example might not use exactly the same

order of steps as the subject would use. It might produce intermediate steps that the subject would not, or use

less efficient strategies than the subject would. Although these permutations may make explaining the

example slightly more difficult, they probably do not make it impossible. So example explaining really is a

different process than interpreting a procedure. Thus, it should be viewed as a distinct prior capability.

4-3. Impasse handling

When people are executing a procedure, even a fairly well-known procedure, they sometimes get

stuck. For instance, if you normally make a white sauce using butter, flour and milk, and you discover, after

mixing the buter and flour together and cooking them for a while, that you are out of milk, then you are at an

impasse. People seem to have a fairly standard set of capabilities for handling impasses. For instance, one

standard so-called repair strategy is substitution (Brown & VanLehn, 1980). In the case of the white sauce

procedure, the cook might substitute for the milk something that is liquid, edible, mildly flavored and

otherwise quite simlar to the milk, Another repair is backing up. In the case of the white sauce, one might

back up to the procedure that requied the sauce (e.g., your favorite moussaka recipe) and reconsider the need

for the sauce.

Repair strategies seem to be somewhat independent of the impasse and the procedure that they are

applied to (VanLehn, Q 9a). For instance, the two white sauce repair strategies, substitution and backing

up, are also applied by arithmetic stUdents to arithmetic procedures (VanLehn, 1989a). This illustrates the

claim that people have a stock of general purpose repair strategies that can be adapted for use with any

procedure's impasses. The impasse-repair process is a prior capability because it does not have to be learned

as each new procedure is learned.
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4.4. Rule acquisition events

It is often conjectured that human problem solvers can interrupt their procedure, reason about the

procedure and its efficacy, make a modification to the procedure, and resume execution of the modified

procedure. In early work, the existence of these rule acquisition events was inferred from changes in the

person's problem solving behavior (e.g., Anzai & Simon, 1979; Neches, 1987). Recent fine-grained protocol

analyses have shown that people tend to pause and/or make unusual verbal comments during a rule

acquisition event (VanLehn, 19??; VanLehn, 1989b; Siegler & Jenkins, 1989). For instance, in one 90

minute protocol (VanLehn, 19??), therc were II rule acquisition events of which 10 were accompanied by

either long pauses, reflective comments (e.g., "It's just like moving four, isn't it?") or negative comments

(e.g., "Wrong... this is the problem and..."). These detailed analyses support the hypothesis that people can

reason about and m,-dify their procedures even in the midst of using them.

We are currently developing detailed simulatiois of rule acquisiion events taken from protocols of

students learning college physics. It is already clear that the subjects have a large variety of rule acquisition

methods that they use to analyze and modify their procedures. For instance, a particularly powerful and

common method is plausible explanation completion. When subjects try to explain a worked example and

their knowledge of the target procedure is incomplete, then they will sometimes be unable to complete an

explanation of the example. There will be segmens of the example's solution that car.not be parsed by the

student's procedure. One rule acquisition method is to invent new rules that will complete the example's

explanation (VanLehn, 1987; Danyluk, 1989; Ali, 1989 Fawcett, 1989; Pazzani, 1988; Wilkins, 1988; Shank

& Leake, 1989). In general, there are combinatorially many ways to complete an explanation (Nowlan,

1987). Rather than search for the "correct" completion, the physics students seem to use plausible or

heurisuc explanation strategies. For instance, one student could not explain w&here a certain minus sign came

from in a physics equation. She eventually formed an explanation after noting that the quantity bearing the

minus sign came from a vector whose x-projection lay along the negative x-axis. She said, "The reason the

negative is there is because the X component is in the negative direction on the X axis." Apparently this

subject used the heuristic that mathematical manipulations usually conserve negations. That is, it is not

permitted to create or delete a negation arbitrarily. On this reasoning, the negation in her equation had to

come, ultimately, from some existing negation, such as the negative paint of the X-axis. Plausible explanation

completion is halfway between syntactic explanation completion (e.g., VanLehn, 1987), where completions

are chosen based on their size or other structural characteristics, and explanation-based learning (Miehell,

Keller & Kedar-Cabelli, 1986), where new rules are created by specializing general rules that are used in an

explanation.
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Plausible explanation completion is just one of many rule acquisition methods that seem to be used by

people in oiier to improve their understanding of a task domain. Since they are used in the course of

acquiring a procedure, they must have existed before the procedure. Thus, they are a prior capability.

4.5. Conclusions

This list has illustrated just a few prior capabilities that a theory of skill acquisition would need to

assume. Some capabilities, such as goal reconstruction and explanation of worked examples, are best

modeled as features of the architecture. Other prior capabilities, such as reading and writing English, are best

modeled as procedural knowledge. Still other capabilities, such as repairing impasses, are best medeled as a

mixture of architectural features and procedural knowledge.

Whether a capability is modeled as procedural knowledge or a feature of the architecture is

independent of whether it is a prior capbility or acquired during the observation period. Indeed, we see no

logical problems with hypothesizing that some features of the architecture are acquired. (Although we do see

interesting technical challenges in developing a learning mechanism that modifies the architecture.)

Having distinguished prior capabilities from architectures, both computational and cognitive, we hope

we have clarified the main psychological claim of the paper, which is simply that goal reconstruction is a

prior capability for classical problem solving and skill acquisition.
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5. Appendix: Teton

Teton is a von Neuman machine, so it has two kinds of memory. The knowledge base is a large, slowly

changing memory that holds general knowledge, such as procedures for solving problems, inference rules

and general facts. The working memory is a rapidly changing memory that holds information produced in the

course of a computation. Like all von-Neuman machines, Teton has an built-in execution cycle that

interprets procedural knowledge stored in its knowledge base. The execution cycle consists of (1) deciding

what to do, based on the current states of the working memory and the knowledge basz, and (2) doing what it

decided to do. The execution cycle is an algorithm that treats the information in the working memory and the

knowledge base as formatted data. The format of the data is called the representation language.

This description of Teton has, so far, said nothing that would distinguish it from any other von Neuman

machine. To define Teton per se, the following three section will describe, respectively, its representation

language, its execution cycle and its memories.

5.1. Knowledge representation

Teton's representation language is appropriate for procedural knowledge, but clumsy at best for

representing declarative knowledge. For instance, it is simple to represent addition and subtraction

algorithms, but it is difficult to represent that addition and subtraction are inverses. This is not intended to be

a claim that the mind has only clumsy ways to represent declarative knowledge. It means only that we have

not investigated tasks where declarative knowledge has a major influence, so we have not yet included a

language appropriate for representing declarative knowledge.

In working memory, the main unit of information is the goal. A goal serves many purposes. It can

represent an action that has already been completed, or an action that is planned but not yet begun, or an

action that is in progress. A goal has slots for indicating a state to be achieved, an operation, the state

resulting from the operation, subgoals created by the operation, the supergoal of this goal, the time that the

goal was created, and so on.

In the knowledge base, there are two kinds of knowledge: operators and selection rules. Operators

have the following parts

1. A goal type, which indicates what kinds of goals this operator is appropriate for. This

description usually has variables that must be instantiated before the operator can be executed.

2. A set of preconditions. If all these prc.icates hold of the current state of working memory, then

the operator can be executed. If not, then the architecture will automatically create subgoals for
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each of the unsatisfied preconditions. Operators may have an empty set of preconditions.

3. A body, which describes what is to happen when the operator is executed. If the operator is a

primitive, the body describes the changes that will occur to the situation and/or the rest of

working memory. If the operator is non-primitive (i.e., a macro-operator), the bo'y describes

uhat subgvas the opriator will create when it is executed.

4. A shortcut condition, which is true if the operator can be assumed to be completed.

Teton's operators allow both deliberate subgoaling and operator subgoaling. The execution of the body of an

operator can create subgoals (deliberate subgoaling), and the architecture will create subgoals if an operator's

preconditions are unsatisfied (operator subgoaling).

Selection rules are the other type of knowledge in Teton's knowledge base. They are used for

selecting a goal to work on and for selecting an operator to use for achieving the selected goal. There are

three types of selection rules. Consideration rules indicate that a goal or operator should be considered.

These rules are consulted first. They usually produce a large set of items. Rejection rules are consulted next,

and cause some of the items to be removed from the set of items under consideration. Preference rules are

consulted last. They partially order the set of items under consideration. Normally, one item will be

preferred over all the others. It is the one selected. Teton's selection rule mechanism is similar to the ones

used by Soar (Rosenbloom, Newell & Laird, 1990) and Prodigy (Carbonell, Knoblock & Minton, 19??). All

three system use this type of mechanism because it makes it eas, to implement the acquisition of strategic

knowledge: just add new selection rules. 9

5.2. The execution cycle

The main loop of Teton's interpreter is shown in table 5-1. Most of it is quite standard: Goals are

selected by goal selection rules. Operators are selected by operator selection rules. Unsatisfied preconditions

cause subgoaling. Execution of macro-operators cauzes subgoaling. Execution of primitive operators causes

state changes. However, there are two facilities, impasses and shortcut conditions, that are not standard and

deserved some explanation.

Whenever the architecture needs to select a goal or operation, it enumerates all possible candidates,

filters this set with the rejection-type selection rules, then rank orders the set with the remaining selection

9Teton's selection rule mechanism is not fully implemented. Although the preference rules are represented explicitly, the
consideration and rejection rules are implemented as Lisp code. The code for goal consideration enumerates all goals in working
memory that are marked "pending" and have no subgoals marked "pending." The code for operator consideraion enumerates all
operators that match the selected goal.
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1. Select a goal from working memory using the goal selection rules. If there is no unique

selection exists, then create an impasse goal describing that and select it.

2. If the selected goal has an operation selected for it already, then skip the next step.

3. Select an operation (a partially instantiated operator) for the current goal using the operator
selection rules. If there is no unique operation, then create an impasse goal describing that,
make it a subgoal of the selected goal, select it, and repeat this step.

4. If the selected operation has unsatisfied preconditions, then create a new goal for each such
precondition and link it to the selected goal as a subgoal. Leave the selected goal marked
"pending," and return to step 1.

5. If the selected operation has a shortcut condition and it is true, or it has subgoals and they are
all completed, then mark the selected goal "completed" and return to step 1.

6. If the operation is primitive, then execute the operation, mark the selected goal "completed",
and return to step I.

7. Otherwise, the operation is non-primitive, so execute the operation and return to step 1.
Execution will cause new subgoals to be created and linked to the selected goal as subgoals.

Table 5-1: The main loop of Teton's interpreter.

rules. If one choice is better than all the others, then Teton takes it. However, if the selection rules fail to

uniquely specify a choice (e.g., they reject all possibilities, or they cannot decide among a two possibilities),

then an impasse occurs. As in Soar (Rosenbloom, Newell & Laird, 1990) and Sierra (VanLehn, 1987;

VanLehn, 1989a), an impasse causes the architecture to automatically create a new goal, which is to resolve

the impasse. Typically, such resolve-impasse goals are tackled by task-general knowledge. For instance, one

of Sierra's methods is: If the selection rules cannot decide among several possible candidates, then choose

one randomly. Another popular impasse-resolving method is: If the selection rules rejected all operations for

the current goal, then mark the goal as accomplished even though it is not. This causes the architecture to

"skip" planned actions that it does not know how to accomplish. Brown and VanLehn (1980) exhibited a

collection of such impasse-resolving methods (called "repairs") and showed how they could explain the

acquisition of many students' bugs (procedural misconceptions).

Shortcut conditions play an important role when Teton reconstructs goals that have been forgotten (i.e.,

deleted from working memory). In order to recover from such working memory failures, Teton has to

reconstruct some of the goals it once had. It is assumed that there are some top-level goal that is not

forgotten. The remaining goals are reconstructed by simply executing the procedural knowledge with the

interpreter of table 5-1. However, when the situation corresponds to a half-completed problem, some of the

goals created are superfluous because they have already been achieved. In such cases, the appropriate
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shortcut conditions are true, and goals are murked "completed" before any attempt is made to execute them.

One mechanism that is common in other architectures is missing in Teton. Teton goals need not be

selected in last-in-first-out (LIFO) order. For instance, if there are two pending goals, A and B, and A is

selected and leads to a subgoal C, then a LIFO restriction would rule out selecting goal B since C is more

recently created. Most architectures, including Soar and Grapes, place a LIFO restriction on goal selection,

but Teton does not. In the case just mentioned, it allows either B or C to be selected.

5.3. Memories

As mentioned earlier, Teton has two memory stores, the knowledge base and the working memory.

Working memory is composed of four distinct memories:

1. The main working memory is the one that holds the goals and other data structures generated by

the execution cycle.

2. The situation holds a representation of the external environment. Its contents model the

subjects' interpretation of what they see, which is task-specific, like a problem space's current

state. For instance, an arithmetic problem is represented as a grid of rows and columns in the

situation, whereas an algebra equation is represented as a tree.

3. The scratchpad is just like the situation, except that the contents represent something that the

subject is imagining, rather than actually seeing. For instance, some subjects imagine the result

of a move during problem solving before actually making the move in the real world. In order

to model such events, Teton distinguishes the situation from the imagination.

4. The buffer is a limited capacity store for items that have simple verbal encodings, such as

numbers.

The latter two memories are a novelty in computational models of the architecture, so they are worth a little

explanation. They are designed as simple versions of the two slave memories described by Baddeley (1986)

and called the articulatory loop and the visio-spatial scratchpad. According to Baddeley, the articulatory

loop consists of a passive storage medium, called the phonological store, and a mechanism for "rehearsing"

its contents (analogously to a dynamic RAM). The phonological store can hold a phonological code for

about 2 or 3 seconds (Zhang & Simon, 1985). If it is not rehearsed in that time, it becomes inaccessible. The

time required to rehearse a code is linearly related to the time required to read the equivalent lexical item.

Thus a person can store a given list of stimulus items if the time required to rehearse them once is less than 2

or 3 seconds. This accounts for the often-cited finding that untrained subjects can store and immediately
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recall about 7 plus or minus 2 chunks (Miller, 1956). Because rehearsal can go on relatively independently of

most cognitive tasks (Baddeley, 1986), the articulatory loop acts like a short term store with a capacity of a

few phonologically encoded chunks. Teton uses this much simpler model, and allows N chunks to be stored

in the articulatory loop, where N is a parameter of the architecture. Typically, the articulatory loop is used

for temporary storage of numbers.

The visual-spatial scratchpad contains the same kind of items as the situation does, but it is meant to

model a scene that the subject is imagining, rather than the real world. Teton's version of the scratchpad is

only used for one purpose, which is looking ahead during problem solving in order to project the

consequences of contemplated moves. Consequently, Teton supports only a simple model the scratchpad.

There is a switch in the architecture, which can be set by a primitive operation to either "normal" or

"imaginary." When the switch is thrown from "normal" to "imaginary," the scratchpad is initialized with a

copy of the items in the current situation. Thereafter, all reading and writing opeiations that would normally

access the situation access the scratchpad instead. The volatility of the scratchpad is modeled, again quite

crudely, by counting the number of operations applied to it. After a threshold is crossed (the threshold is a

parameter of the model), the contents of the scratchpad become inaccessible.

This facility was used to simulate look-ahead search in the Tower of Hanoi, which plays a crucial role

in Anzai and Simon's (1979) account of strategy acquisition. In the course of developing a similar account

of strategy acquisition, we discovered that learning the more advanced versions of the disk subgoaling

strategy would require looking ahead 12 moves in the scratchpad. Not only is this implausible, but setting the

stability parameter of the scratchpad to 13 caused learning of earlier versions of the strategy to go awry. This

led us to look for methods of strategy acquisition that did not use the scratchpad. We found not one but

several, along with good support for them in the protocol data (VanLehn, 19??; VanLehn, 1989b).
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